
Parallel Design Patterns

Assignment 1

B087928

February 21, 2016



1 Parallel Pattern and explanation

1.1

The parallelisation pattern selected for this problem is Geometric Decomposition.

1.2

The first step in deciding upon this parallelisation strategy was to find concurrency within the

problem. We have 6 clear tasks that need to be done each iteration, the first 4 are specific to

each squirrel: Calculate new position; (decision) does squirrel die? (decision) does squirrel

reproduce? (decision) does squirrel catch disease? The last two of these have dependencies,

and vice versa, on the next two tasks which are values pertaining to cells (geographical areas

of the landscape): calculate populationInFlux and calculate infectionLevel.

The arithmetic operations required to complete these tasks are very simple once we have the

relevant data readily available. Thus this problem is very data dependent. Therefore we shall

benefit by using a design pattern with a good decomposition of data.

For each squirrel we must record the value of populationInFlux and infectionLevel for each

step. Similarly for each cell we must know how many squirrels, and whether they are healthy

or diseased, there are in that cell to calculate populationInFlux and infectionLevel at each step.

This means that every step a squirrel takes requires an update (exchange of information) be-

tween the squirrel and the cell its in.

Since we know we’ll need to communicate information between a squirrel and the cell it’s

located in at every iteration it makes sense to use geometric decomposition. This seems like

the most logical way to avoid the unnecessary communication between cores. With this pattern

we will only need to communicate between cores when a squirrel moves from a cell which

belongs to the domain of one processor to the cell in the domain of another. This appears to

reduce communication by a considerable amount considering that (depending variably on the

size of cells) a relatively small number of squirrel steps will result in it entering a different

processors domain.

We have a clear timeline for the problem where we have steps, or iterations. This is clearly a

linear problem where we do not use recursive data. Thus our analysis so far suggest the use of

domain (or geometric) decomposition. This is very common in simulations in time and space.

1



It is important to consider load balance. It is likely that during the simulation the majority of

the squirrels will be in a minority of the cells and therefore acted on by a minority of the PEs.

However, since the squirrels move randomly throughout the landscape it is expected that a good

load balance shall be maintained throughout most of the runtime.

2 Spread of disease by short range interaction between cells

The biologist want to model the spread of disease into neighbouring cells through means other

than squirrels. This is a short range interaction between neighbouring cells. Similarly to the

squirrel case, using a domain decomposition shall minimise communication between PEs. Only

PEs with adjacent domains shall need to communicate information. Since we have a short range

interaction there is never any need for cells that are not geographically adjacent to each other

to exchange information. Thus domain decomposition should make communication easy to

implement. The communication can be done via halo swaps between PEs with adjacent cells.

3 Additional Patterns

3.1 Task Parallelism

As discussed above, the tasks involved in this program are short and not computationally ex-

pensive. Tasks will be completed quickly on each PE which shall make good load balance very

difficult to achieve. Furthermore, it was not possible to create tasks that could be completed en-

tirely concurrently (we need to know populationInFlux and infectionLevel to decide if squirrel

reproduces or dies). Therefore we will require PEs to communicate information very regularly

and is therefore an inappropriate pattern for this problem.

3.2 Pipeline

It is impossible to implement an efficient pipeline for this problem since has short tasks and

evolves in time. Our pipeline would have to be only as long as one iteration. A pipeline requires

all PEs to communicate with at least one other process and therefore only long pipelines are

efficient therefore we can conclude that this is clearly a very inappropriate pattern for this

problem.

2



4 Language

In the model that we have described in answer to question 1 we only need to communicate

between processes when a squirrel moves from a one cell to another which is operated on

by a different process. This should not be very often and should be done by an explicit MPI

communication between processes.

3


